Token Ring Network Architecture Pdf Download _BEST_
Download ---> https://blltly.com/2tpqHi
Token Ring Network Architecture Pdf Download _BEST_
It uses a special three-byte frame called a token that is passed around a logical ring of workstations or servers. This token passing is a channel access method providing fair access for all stations, and eliminating the collisions of contention-based access methods.
In 1988 the faster 16 Mbit/s Token Ring was standardized by the 802.5 working group.[9] An increase to 100 Mbit/s was standardized and marketed during the wane of Token Ring's existence and was never widely used.[10] While a 1000 Mbit/s standard was approved in 2001, no products were ever brought to market and standards activity came to a standstill[11] as Fast Ethernet and Gigabit Ethernet dominated the local area networking market.
Stations on a Token Ring LAN are logically organized in a ring topology with data being transmitted sequentially from one ring station to the next with a control token circulating around the ring controlling access. Similar token passing mechanisms are used by ARCNET, token bus, 100VG-AnyLAN (802.12) and FDDI, and they have theoretical advantages over the CSMA/CD of early Ethernet.[16]
Every station in a Token Ring network is either an active monitor (AM) or standby monitor (SM) station. There can be only one active monitor on a ring at a time. The active monitor is chosen through an election or monitor contention process.
The active monitor performs a number of ring administration functions. The first function is to operate as the master clock for the ring in order to provide synchronization of the signal for stations on the wire. Another function of the AM is to insert a 24-bit delay into the ring, to ensure that there is always sufficient buffering in the ring for the token to circulate. A third function for the AM is to ensure that exactly one token circulates whenever there is no frame being transmitted, and to detect a broken ring. Lastly, the AM is responsible for removing circulating frames from the ring.
Token Ring stations must go through a 5-phase ring insertion process before being allowed to participate in the ring network. If any of these phases fail, the Token Ring station will not insert into the ring and the Token Ring driver may report an error.
Systems Network Architecture[1] (SNA) is IBM's proprietary networking architecture, created in 1974.[2] It is a complete protocol stack for interconnecting computers and their resources. SNA describes formats and protocols but, in itself, is not a piece of software. The implementation of SNA takes the form of various communications packages, most notably Virtual Telecommunications Access Method (VTAM), the mainframe software package for SNA communications.
Within SNA there are three types of data stream to connect local display terminals and printers; there is SNA Character String (SCS), used for LU1 terminals and for logging on to an SNA network with Unformatted System Services (USS), there is the 3270 data stream mainly used by mainframes such as the System/370 and successors, including the zSeries family, and the 5250 data stream mainly used by minicomputers/servers such as the System/34, System/36, System/38, and AS/400 and its successors, including System i and IBM Power Systems running IBM i.
The proprietary networking architecture for Honeywell Bull mainframes is Distributed Systems Architecture (DSA).[27] The Communications package for DSA is VIP. DSA is also no longer supported for client access. Bull mainframes are fitted with Mainway for translating DSA to TCP/IP and VIP devices are replaced by TNVIP Terminal Emulations (GLink, Winsurf). GCOS 8 supports TNVIP SE over TCP/IP.
The networking architecture for Univac mainframes was the Distributed Computing Architecture (DCA), and the networking architecture for Burroughs mainframes was the Burroughs Network Architecture (BNA); after they merged to form Unisys, both were provided by the merged company. Both were largely obsolete by 2012. International Computer